
12 October 1998 

Physics Letters A 247 (1998) 221-226 

Theory of hierarchical coupling 

PHYSICS LETTERS A 

A.I. Olemskoi avl, A.B. Kiselev b,2 
a Department of Physical Electronics, Sumy State University, 2, Rim&ii-Korwkov St., 244007 Sumy, Ukraine 

b Department of Pure and Applied Mathematics, Chemigov Technological Instimte, 95, Shevchenko St., 250027 Chemigov, Ukraine 

Received 5 March 1998; revised manuscript received 25 June 1998; accepted for publication 14 July 1998 
Communicated by AI! Fordy 

Abstract 

A recursion relation between the intensity of hierarchical objects at neighbouring levels of a hierarchical tree, the strength 
of the coupling between them and the level distribution of nodes of the hierarchical tree are proposed. Regular (including 
Fibonacci), degenerate and irregular trees are considered. It is shown that the strength of hierarchical coupling is an 
exponentially, logarithmically or power law decreasing function of distance from a common ancestor, respectively. @ 1998 
Elsevier Science B.V. 
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1. Formulation of the problem 

Despite the widespread occurrence of hierarchy in 
social life and its importance to other systems [ 1 I, the 
theory of hierarchically subordinated ensembles has 
mainly evolved in order to understand the dynamics of 
spin glasses [ 2,3]. The key point is that the hierarchi- 
cally subordinated objects form an ultrametric space. 
Geometrically the latter can be conceived of as a Cay- 
ley tree (see Fig. 1) . The degree of hierarchical cou- 
pling between objects w, corresponding to the nodes 
of a given level, depends on the distance between them 
defined by the number of steps m to a common ances- 
tor. So the ultrametric space is equipped with metrics, 
f c( m (,J is the distance). The primary goal of this 
work is to show how the function w( 5) can be derived 
for different types of hierarchical trees. 
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Let Zk be the intensity of a hierarchical object at 
level k. We assume that the intensity Zk increases by 
going from level k to the nearest higher level k - 1 

(it looks like climbing the career ladder). Mathemat- 
ically, it can be expressed in terms of the simple re- 
cursion relation 

i&l = zk + &'W(Zk) , (1) 

where Nk is the number of nodes at level k and w( Zk) 
is the required function of hierarchical coupling. In 
the case of regular tree, shown in Fig. la, we have the 
exponentional dependence of Nk on k which is typical 
of fractal objects, 

Nk= jk, (2) 

where j is the branching ratio of the tree (the case 
of j = 2 is shown in Fig. la). Another example is 
the degenerate tree with only one branching node per 
level (see Fig. 1 b) , so that 

0375-9601/98/$ - see front matter @ 1998 Elsevier Science B.V. All rights reserved. 
PII SO375-9601(98)00549-O 



A.I. Olemskoi, A.B. Kiselev/Physics Letters A 247 (1998) 221-226 

Fig. 1. Basic types of hierarchical txes (the level number is 
indicated at the left, the corresponding number of nodes at the 
right): (a) regular tree with j = 2; (b) degenerate tree with j = 3; 
(c) Fibonacci tree; (d) irregular tree for n = 1 at a = 2. 

Nk=(j-l)k+l. (3) 

For the Fibonacci tree (Fig. lc) , the number of nodes 
on the kth level, Nk = F( k + 2)) is determined by the 
Fibonacci numbers F(k) , k = 0.1, . . ., which obey the 
equation F(k + 2) = F(k + 1) + F(k) with F( 1) = 
F( 2) = 1. Fork > 1 the latter implies that F( k+2) M 
qrk, where q z 1.17082 and T = (6 + 1)/2 x 
1.61803 is the golden mean. In view of this, the num- 
ber of nodes of the kth level of the Fibonacci tree is 

Nk Mq7k, k>l. (4) 

Lastly, for the irregular tree like that depicted in Fig. Id 
a power law approximation of the form 

Nk ka, xn n>O, a<1 (5) 

is suggested. 
Note that Eq. ( 1) was originally used for describ- 

ing a resonance hierarchy in nonlinear oscillations [ 41 
and enjoys the property of self-similarity that is a dis- 
tinguishable feature of hierarchical systems. In order 
to clarify the point, suppose that zk cx tk with 5 < 1 
being the similarity parameter and w( z ) is a homo- 
geneous function, w ((z ) = 5” w ( z > . Then in the lim- 
. . 
iting case k > 1, when Zk_ i N Zk, Eqs. (l), (2) give 
the conventional relation 

cu=l-D, D E lnj/ lnt-’ , (6) 

linking the exponent LY of a physical quantity with the 
fractal dimension D < 1 of a self-similar type object 
in the sense of the rugged coastline [ 51. Moreover, 
since the function w( z ) can be assumed to be of the 

form w( z ) = Wz” where W is a positive constant, 
substituting the expression zk = Xktk = XkjmklD in 
Eqs. ( 1)) (2) provides the recursion relation for xk of 
the following form, 

xk-_l = &xk) , 4(x) = [(x + wxl-D). (7) 

The map 9(x) has two fixed points: the stable one 
x, = 0 and the critical one 

(8) 

As a result of this, we obtain the following homoge- 
neous functions. 

Zk = XcjmkJD . 
wk = WtIn (j’lD _ 1 )-Aj-“k , 

(9) 

(10) 

where 

d=(l-D)/D (11) 

is the decrement that determines the scale of hierar- 
chical coupling in ultrametric space. 

2. Recursion relation in the continuum 
approximation 

When k + 00 the continuum approximation can 
be used, so that the finite difference zk - i&l is re- 
placed with the derivative dz/dk. Eq ( 1) then can be 
rewritten in the integral form, 

l=(ka-k)lnj, k<b, (13) 

where 5 is the distance in ultrametric space and kc > 
1 is the number of the hierarchical level under consid- 
eration. Since the main contribution to the integral on 
the left-hand side of Eq. ( 12) is determined by small 
z we just need to know the asymptotical behavior of 
w( z ) at z -+ 0. According to the above discussion, 
for small z the function w(z) is homogeneous and 
can be taken to be of the form 

w(z) = wzl-D, z -+o. (14) 
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It is not difficult then to solve Eq. (12) for different 
trees with the node numbers Nk defined by Eqs. (2)- 
(5) and with Eq. (13) taken into consideration. 

2.1. Regular and Fibonacci trees 

In the case of a regular tree the dependences of level 
intensity z (0 and strength of hierarchical coupling 
w (5) on the distance 5 in ultrametric space are as 
follows, 

z = w-‘l”-n’[(l _ U) +UeH~]‘lD 

’ u = DW”(‘-D)/Inj, lo = kelnj, (15) 

w= [(l -u) +ue5-50]A, c<&. (16) 

In Eq. ( 16) and hereafter w( 5) is assumed to sat- 
isfy the condition w( 4’0) = 1. So, if the distance 5 
to a common ancestor increases, the functions z (4’) 
and w( 5) reveal exponential increase with increments 
D-’ and d correspondingly. The increment of hierar- 
chical subordination amplification ( 11) becomes zero 
for the system with D = 1 (from Eq. ( 14) the lat- 
ter means ideal hierarchical subordination). Both of 
the decrements D-’ and A increase indefinitely as the 
fractal dimension D decreases to zero. 

Starting from Eq. (7)) it is straightforward to anal- 
yse solutions of Eq. ( 1) and to make a comparison be- 
tween the results obtained in the continuum limit and 
exact ones. Referring to Fig. 2, where the graphs of 
functions CJ~( X) and 4-l (X) are shown, it is seen that 
if the initial value Xo obeys the condition Xc < XC, just 
a few steps are needed for x to approach zero. When 
x0 = X,-, the solution is defined by Eq. (8) and in the 
case of xa > X, solutions increase indefinitely. It can 
be shown that in the latter case Zk decays exponentially 
to a constant. At this stage, there is a good agreement 
between the qualitative conclusions of the continuum 
approximation and exact ones (see Fig. 3). It is inter- 
esting to note that Eq. (15) can be derived from the 
exact solution given by Eq. (9) only if j’lD - 1 x 
In j/D, which corresponds to the limiting case where 
In j < D. In order to clarify the above points note 
that within the framework of the continuum approx- 
imation the recursion relation (7) takes the form of 
well-known Landau-Khalatnikov equation 

dXk av -- 
dk= aXk’ (17) 

----- $(x) 
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Fig. 2. The plots of 4(x) (dashed line) and 4-l (z ) (solid line) 
at W = 0.5 and D = 0.6 (the behaviour of x under successive 
iterations of the map q5-‘(x) is shown by arrows for xo < xc 
and no > x,). 

VE-;+ &x)dx, 
s 

(18) 

where V is the effective potential. Inserting the depen- 
dence d(X) from Eqs. (7) into Eq. ( 18) yields the 
expression for the function V(x) , 

2-D _ 
1 _ j-l/D 

2 
X2 , (19) 

where the second equation (6) is taken into account. 
According to Fig. 4, the potential V(x) increases in 
the region x < xc, where the value x, is given by 
Eq. ( 8)) and then decreases indefinitely. It is notewor- 
thy to point out the analogy with the theory of creation 
and growth of new phase precipitations, where at a 
precritical size of embryos the surface tension results 
in an increase of free energy which then decreases in- 
definitely due to thermodynamical stimulus of phase 
transition [ 61. 

So, one can speak about instability of the hierar- 
chical system with respect to the increase in the level 
number when the initial intensity x0 exceeds the criti- 
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Fig. 3. The k-dependences of In ZL. where the solutions of IQ. (7) 
are obtained numerically (circle dots) and in the continuum ap- 
proximation (solid line) at W = 1, j = 2 aad D = In j = 0.6931. 

cal value xc. This represents the well-known fact of the 
self-reproduction of bureaucracy in social hierarchy. 

Note that the solution of Eq. ( 17) gives zk in the 
form 

rk = (700 _ xf ( 1 _ e-n(t-0k) ) t/D e(t-t+tn&k, 

8 z j-‘/D , (20) 

that is equivalent to Eq. (15) when the above- 
mentioned condition In j << D is met, so that In j x 
j- l,lnf*[- 1. 

A comparison between Eq. (2) and Eq. (4) shows 
that for sufficiently large k the case of the Fibonacci 
tree (Fig. lc) can be reduced to the above-considered 
regular tree with j and W replaced by r and W/q, 

respectively. So the fractal dimension D is fixed and 
equals In T/ In 2 M 0.6942 [ 71. 

2.2. Degenerate tree 

In the case of a degenerate tree, where Nk is defined 
by Eq. (3), Eqs. (12), (14) give 

V 
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Fig. 4. The effective potential ( 19) as a function of x at W = 1, 
j = 2 and D = 0.6. 

z = w-‘l(l-D) 1 _ nln 

[ ( 1+ >I 
1/D 

J+o-i) , 
DW’/(‘-D) 

UE 
j-l ’ (21) 

w= I-ln I+$$(&-[) 
[ ( I 4. (22) 

When this result is compared with that of Eqs. ( 15), 
( 16)) it is apparent that going from the regular tree to 
degenerate one results in logarithmic slowing down of 
the foregoing exponential amplification of hierarchical 
subordination. 

2.3. Irregular tree 

Let us consider the intermediate case of a tree char- 
acterized by a power law growth in level number 
(Eq. (S), Fig. Id). The result can be written as fol- 
lows, 

z = w-‘l+-D)[ 1 - u( 1 - ~/&J)‘-O]‘lD ) Q < 1 , 

u_= 
DWl/(‘-D,k;-‘J 

n(l-a) ’ (23) 
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w= [l -u(l -l/&)‘-01”. (24) 

From Eqs. (23)) (24) it is clear that the level intensity 
and the strength of hierarchical subordination show a 
power law dependence on the distance 5. 

3. Discussion 

The above consideration shows both the level in- 
tensity z and the strength of hierarchical coupling w 
decrease as the level number k increases and, con- 
versely, they are increasing functions of the distance 
5 in ultrametric space. In this connection, it should be 
emphasized that the dependence wk characterizes the 
degree of alliance of hierarchical objects at the refer- 
ence level, whereas w( 4’) corresponds to the strength 
of hierarchical subordination. 

A distinguishing feature of the regular tree is the 
fastest rate of change of z (t) and w( 5). As it is seen 
from Eq. ( lo), the number of hierarchically subordi- 
nated level is bounded by the finite value 

~=(dlnj)-‘=D[(l-D)lnj]-‘. (25) 

In other words, the depth of hierarchical subordina- 
tion K is finite for a regular tree, and in this sense it 
implies the weak hierarchical coupling. However, for 
the special case of totalitarian hierarchy, where the hi- 
erarchical coupling is ideal (in Eq. ( 14) D = 1), the 
depth of the subordination is infinitely large (K = co). 

Nevertheless, according to Eq. (9) the intensity of the 
hierarchical objects still decays exponentially and the 
totalitarian system, though being ideally subordinated, 
is doomed to inefficiency. Social experiments that lend 
support to this conclusion are well known. 

With passage to an irregular tree, which is supposed 
to be of widespread occurrence in nature, instead of ex- 
ponentially fast decay inherent to a regular tree the hi- 
erarchical coupling exhibits a power law dependence. 
The slowest, logarithmic law corresponds to a degen- 
erate hierarchy with only one branching node per level 
and can be realized as a selection system. For both ir- 
regular and degenerate trees the depth of hierarchical 
subordination is infinite, and the hierarchical coupling 
of such trees is strong. 

It should be emphasized that the above strength 
of hierarchical coupling is fixed with the condition 
w ( SO) = 1 related to the top level. Since any real hier- 

archical system is usually built up from the top down- 
wards, such a choice of normalization is preferred to 
the condition ~(5 = 0) = 1. It seems, that given the 
choice the expressions inside the square brackets in 
Eqs. ( 15), ( 16), (23), (24) may take negative val- 
ues at 5 = 0 under the parameter u > 1. But since we 
are interested in the supercritical case where ~0 > xc 
and, as is seen from comparison between Eq. ( 15) 
and Eq. (21), u = (.~~/a)~, the condition u < 1 is 
fulfilled. 

As is evident from the foregoing, the fractal dimen- 
sion D, that governs the force of hierarchical coupling 
w( z ) at given configuration of a tree, plays an im- 
portant part in the theory. Throughout this paper, it 
was adopted that the force of the hierarchical coupling 
is characterized by the only single value of D. It is 
not difficult to extend the consideration to the case 
of multifractal coupling. To do this one has to intro- 
duce an additional parameter q E (-00, co), so that 
the strength w4( z ) is distributed over q with density 
p(q) and the fractal dimension D(q) is in the range 
between the maximum dimension D_, and the min- 
imum one D+, [ 7 1. For example, p for ideal hierar- 
chical coupling is given by 

p(q) = ID’(qo)l-‘Q - qo) 9 (26) 

where the prime denotes the derivative with respect 
to q and qo is a solution of equation D(q) = 1. As a 
result, the total strength is defined by 

00 

w(5) = s wq(Op(q) dq 3 (27) 
-co 

where Eqs. ( 16), (22), (24) with D replaced by 
D(q) can be used as a kernel of Eq. (27). The depen- 
dences D(q) and p(q) for a given multifractal can be 
found after solving the respective problem (see Ref. 

[71). 
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